

St Paul's CE Primary School

Maths Written-Calculation Policy

Vision

Our school is one family, united in love and deeply rooted in our Christian values, where together on life's journey we flourish, striving for excellence in all that we do. Inspired by the transformation of St Paul, and enlightened by the glory of God, we will shine like stars to make the world a better place.

Values

Love, Forgiveness, Faith, Friendship, Hope and Peace.

ST PAUL'S CE PRIMARY SCHOOL MATHS WRITTEN-CALCULATION POLICY

Rationale

This policy has been designed to show progression in written mathematical methods throughout the school. Our written calculation policy is set out to show:

- The objectives stipulated for all four operations by the National Curriculum
- The calculation methods for each year group
- Relevant vocabulary needed at each stage
- Examples of reasoning activities

Concrete, Pictorial and Abstract

Each method has examples as to what it looks like in the concrete, pictorial and abstract forms. All learners from EYFS to Year 4 are introduced to a calculation method for the first time using concrete manipulatives. Concrete resources from EYFS to Year 6 include: bead strings, Dienes, Cuisenaire Rods, Place Value counters, Numicon and multilink cubes. Children will then progress through to a pictorial stage before moving to the abstract. During the pictorial stage, children will be taught to use the bar model (see separate guidance booklet). The amount of time needed to progress through each stage is unique to each learner.

Mastering Calculation

The new curriculum has a strong focus on mastery and therefore, if a child is fluent in a method for their year group, they should not (normally) be moved onto a different method of calculation. Instead, children will be encouraged by their teacher to 'go deeper' within this method. This may involve: using it in different contexts; using and applying it to other learning; using it with missing digits or values; explaining or experimenting with different aspects of it; proving answers with pictures or manipulatives; or explaining what has gone wrong in a calculation. Children must also check their calculations through the use of estimation and inverse operations.

Mathematical Vocabulary

The National Curriculum places great emphasis upon the use of correct mathematical vocabulary and children developing this. Throughout school, children are strongly recommended to use and apply mathematical vocabulary when learning a new method or concept. They will be constantly exposed to this, have it expertly modelled by their teacher and be expected to use it themselves when justifying methods.

Mental Methods

Children should always be encouraged to see if they can work out a calculation mentally before trying a written method. Children will be shown number patterns and relationships between numbers throughout the school. Times tables are introduced and taught in specific year groups:

Reception: x2;

Year 1: x5, x10
Year 2: x4, x3
Year 3: x6, x8, x7, x9, x11, x12.
Year 4: consolidation

ST PAUL'S CE PRIMARY SCHOOL MATHS WRITTEN-CALCULATION POLICY

Mathematics Educational Programme

Developing a strong grounding in number is essential for providing children with the platform to excel mathematically. Children should develop a deep conceptual understanding of the numbers to 10 , the relationships between them and the patterns therein. By providing frequent and varied opportunities to build and apply this understanding, children will develop a secure base of knowledge from which mathematical mastery is built.

EYFS ELG	Children at the expected level of development will: Number: - Have an understanding of number to 10, linking names of numbers, numerals, their value, and their position in the counting order; - Subitise (recognise quantities without counting) up to 5; - Automatically recall number bonds for numbers $0-5$ and for 10, including corresponding partitioning facts.
EYFS ELG Numerical Patterns:	Children at the expected level of development will: - Automatically recall double facts up to $5+5 ;$ - Compare sets of objects up to 10 in different contexts, considering size and difference; - Explore patterns of numbers within numbers up to 10, including evens and odds.

Key Stage 1 - Year 1

	+		x	\div
National Curriculum Objective	- Read, write and interpret statements involving addition, subtraction and equals sign. - Add and subtract 1 and 2 digit numbers to 20, including zero. - Represent and make number bonds and related subtraction facts within 20. - Regroup to 10 to make 10.		- Double and halve numbers to 10 through grouping and sharing. - Make links to counting in multiples of 2,5 and 10 - drawing arrays. - Reason about odd and even numbers and relate to doubling and halving. - Solve one-step problems involving multiplication and division. - Share objects into equal sized groups.	
Suggested calculation	- Counting on using number lines and number tracks - Informal partitioning	Counting back	Repeated addition and arrays	Sharing and grouping
Mathematical vocabulary	count on, count back, nu facts, subtraction facts, fac more, less, plus, minus, between,	bonds, number ily, add, subtract, sum, difference	grouping, sharing, multip lo	ide, double, half, array

Year 2

	+	x	\div
National Curriculum Objective	- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 - Understand the $=$ sign and how $20+2$ and 24 -2 both have the same value of 22 . - Add and subtract numbers: - a 2-digit number and ones (no regrouping \& regrouping in the ones) - a 2-digit number and tens (no regrouping \& regrouping in the ones)	- Introduction of arrays in a grid method. - Write mathematical statements using the multiplication (\times), division (\div) and equals (=) signs. - Link multiplication and division through missing number questions. - Make links to counting in multiples of 4 and 8. - Share and group objects. - Group using repeated subtraction.	
Suggested calculation	- Informal partitioning - Partitioning column - Column method	- Arrays in a grid	- Sharing and grouping in arrays
Mathematical vocabulary	Add, subtract, count on, count back, more, less, plus, minus, total, sum, difference, partition, bridge, round, inverse, number line, number facts, multiple of 10 , regroup	Inverse, operation, multipli multiply, multiplication, addition, lots of, array, divid halve, d	n table, times table, product, repeated division, shared by, \qquad

ST PAUL'S CE PRIMARY SCHOOL MATHS WRITTEN-CALCULATION POLICY

Lower Key Stage 2 - Year 3

	+ -	x	\div
National Curriculum Objective	- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 . - Add and subtract numbers: - up to three digits - two 2 digit numbers - adding 3 one digit numbers	- Multiply 2 digit numbers by a 1 digit. - Introduction of the grid method. - Make links to counting in multiples of 3,6,9. - Share using place value headings $\mathrm{TU} \div \mathrm{U}$. - Introduce remainders.	
Suggested calculation	column method	- Short multiplication	- Sharing and grouping within place value columns
Mathematical vocabulary	Add, subtract, count on, count back, more, less, plus, minus, total, sum, difference, partition, bridge, round, inverse, number facts, multiple of 10, regroup	Inverse, operation, multiplication table, times table, multiply, multiplication, times, product, repeated addition, lots of, array, divide, division, shared by, halve, double	

Year 4

Upper Key Stage 2 - Year 5

	+	x	\div
National Curriculum Objective	Add and subtract whole numbers with more than 4 digits and decimals, using formal written methods of columnar addition and subtraction.	- Multiply numbers up to 4 digits by a 1 or 2 digit number. - Introduction of long multiplication with explanations. - Introduction of compact long multiplication.	Divide numbers up to 3 digits by a 1 digit number using the formal written method of short division and interpret remainders appropriately in context
Suggested calculation	Compact column	- Formal long multiplication	- Compact short division
Mathematical vocabulary	addition, subtraction, sum, total, difference, minus, less, column addition, column subtraction, operation, regroup, inverse, estimate, digit, place holder, rounding, approximate, accuracy	multiply, multiplication, times, product, commutative, short multiplication, long multiplication, multiplication facts, estimate, multiple, remainder	

ST PAUL'S CE PRIMARY SCHOOL

 MATHS WRITTEN-CALCULATION POLICYYear 6

	+	x	\div
National Curriculum Objective	Add and subtract whole numbers with more than 4 digits, and decimals with different place values, using formal written methods of columnar addition and subtraction.	- Multiply multi-digit numbers up to 4 digits by a 2 digit whole number using formal written method of long multiplication.	Divide numbers up to 4 digits by a 2 digit number whole number using the formal written method of long division, and interpret remainders as whole number, fractions or decimals
Suggested calculation	Compact column	- Formal long multiplication	- Long Division
Mathematical vocabulary	addition, subtraction, sum, total, difference, minus, less, column, operation, inverse, estimate, approximate, multiply, multiplication, times, product, commutative, short multiplication, long multiplication, estimate, remainder, fraction, decimal, divisible		

ST PAUL'S CE PRIMARY SCHOOL

 MATHS WRITTEN-CALCULATION POLICYCalculation Policy EYFS

Addition	Subtraction	Multiplication	Division
Children are encouraged to gain a sense of the number system through the use of counting concrete objects. Combine objects in practical ways and count all. Understand addition as countingon and will count on inones and twos using objects, cubes, bead string and number line. Use concrete and pictorial representation to record their calculations. Begin to use + and = Encourage to develop a mental picture of the number system in their heads to use for calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children are encouraged to gain a sense of the number system through the use of counting concrete objects. Understand subtraction as counting out. Begin to count back in ones and twos using objects, cubes, bead stringand number line. They use concrete and pictorial representation to record their calculations. They begin to use - and = They are encouraged to develop a mental picture of the number system in their heads to use for calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children use concrete objects to make and count equal groups of objects. They will count on in twos using a beadstring and number line. They understand doubling as repeated addition. $2+2=4$ They use concreteand pictorial representation to record their calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	Children use concrete objects to count and share equally into 2 groups. 6 cakes shared between 2 people each person gets 3 cakes. $6 \div 2=3$ Count a set of objects and halvethem by making two equal groups. Understand sharing and halving as dividing by 2. Begin to use objects to makegroups of 2 from a given amount. Use concrete and pictorial representation to record their calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.

'Shine like stars in the world.'

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Progression in Written Calculation Years 1-6

Addition

Addition and Subtraction are connected. Addition names the whole in terms of parts, while subtraction names a missing part of the whole.

Part	Part
Whole	

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. Use cubes or Numicon	A bar model which encourages children to count on rather than count all	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2=$

ST PAUL'S CE PRIMARY SCHOOL

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

TO+ TO - no regrouping	Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. $\text { E.g. } 24+15$ Partitioning (Aggregation model) $34+23=57$ Base 10 equipment: Children create the two sets with Base 10 equipment and then combine; ones with ones, tens with tens. Using dienes/Cuisenaire to show bar models.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. To explain: The bar model:	Calculations $\begin{gathered} 21+42= \\ 21 \\ +42 \end{gathered}$
TO + TO (With regrouping in the ones)	Show regrouping using dienes: $36+25$ $37+15=52$ Continue to develop understanding of partitioning and place value	Children to represent base 10 by drawing it in a place value chart. The bar model:	Looking for ways to make 10 $\begin{aligned} & \quad 36+25= \\ & 30+20=50 \\ & 6+5=11 \\ & 50+11=61 \\ & \\ & \text { Formal method: } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$

ST PAUL'S CE PRIMARY SCHOOL

Children should be here by the end of Y2 ?			
Year 3			
$\mathrm{HTO}+\mathrm{O}$ (No regrouping)	This can also be done with place value counters or Base 10.$134+215=$	Pictorial representation of the columns and counters.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition.
HTO + O (With regrouping)		 +00 0 0000	
HTO + T (No regrouping)			Introduce the column method.
HTO + TO (With regrouping in the tens)	Make both numbers on a place value grid.	$100 s$ 10 s Is 00 6000 500 	Regrouping: $\begin{array}{r} H T O \\ 362 \\ +\quad 9 \\ \hline \end{array}$
HTO + HTO (With regrouping in ones \& tens)	 146 +527 Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.	If there are more than 10 or more counters in a column regroup into a new counter in the next column. Then add up all the columns. Make it, Draw it, Write it. Bar models	compact column method up to 3 digits $\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL

Quick Glance Addition Written Methods:		
Year Group	Written Method	Written Method Example
EYFS	Number tracks and Number lines	
Year 1	Number lines Understanding equality	$\begin{aligned} & 6+?=11 \\ & 6+5=5+? \\ & 6+5=?+4 \end{aligned}$
Year 2	Partitioning column compact column	
Year 3	Expanded column Formal column	$\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$
Year 4	Formal column	Real life, money, measures. More than 2 numbers added
Year 5	Formal column	Emphasis on decimals, money, measures, reasoning and worded problems
Year 6	Formal column	Reinforcing and securing all of the above

Quick Glance Addition Number Size	
Year Group	Number size
EYFS	Up to 2 digit + 1 digit
Year 1	Up to 2 digits + 2 digit
Year 2	Up to 2 digits + 2 digits
Year 3	Up to 3 digits (1000)
Year 4	Up to 4 digits including two decimal places
Year 5/6	More than 4 digits and decimals

To add successfully, children need to be able to:

- recall all addition pairs to $9+9$ and complements in 10 ;
- add mentally a series of one-digit numbers, such as $5+8+4$;
- add multiples of 10 (such as $60+70$) or of 100 (such as $600+700$) using the related addition fact, $6+7$, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of 100 ,

10 and 1 in different ways.

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for addition.
In Y3 and Y4 (and beyond where appropriate) the children should record their written calculations using H T O to reinforce the place value of each digit in the sum.

Subtraction

Objective and strategies	Concrete	Pictorial	
Taking away ones	Use physical objects, counters, cubes, Numiconand other items such as bean bags etc to show how objects can be taken away. $4-3=1$	Cross out drawn objects to show what has been taken away. Bar model can also be used. Q Q囚O $15-3=$ 12	Children start to show recognisable abstract number sentences. $4-3=1$$\square=4-3$4 3 $?$
Counting back	Use number lines or number tracks - start with 6 and count back 2 $6-2=4$ Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.	Children represent what they see pictorially eg.	Children to represent the calculation on a number-line or number track and show their jumps. Encourage using an empty number-line. Children start to show recognisable abstract number sentences.

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

	13-4	Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	$6-2=4$ Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Draw cubes/other concrete objects or use the bar model to illustrate what they need to calculate Count on to find the difference	Find the difference between 8 and 5 $8-5=$ Explore why $9-6=8-5$ Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Make 10	14-5 (Numicon, counters, 10 square, bead string) Make 140 n the ten frame Take away the 4 first to leave 10 Then takeaway 1 so you have taken away 5 . You are left with the answer of 9.	Children present the ten frame pictorially and discuss what they did to make 10.	Show how to make 10 by partitioning $\begin{array}{ll} 14-5=9 \\ 4 & 14-4=10 \\ 10-1=9 \end{array}$ How many do we take off to reach the next 10? How many do we have left to take off?

ST PAUL'S CE PRIMARY SCHOOL
MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL
MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Children should be here by the end of Year 3

Y4 - compact column method with regrouping with more than 3 digits. Include 0s. Make it, Draw it, Write it. Subtraction with money (decimals).

${ }^{8} 8^{12} 3^{1} 2$	470	700	604
7	-142	-485	-347

Answer: 475

Y5 + Y6 compact column method with regrouping with more than 4 digits.
Place value counters for decimals with different amount of decimal places.

$$
263-26.5=
$$

	2	56	123	.	10
-		2	6	.	5
	2	3	6	.	5

ST PAUL'S CE PRIMARY SCHOOL

Quick Glance Subtraction Written Methods:		
Year Group	Written Method Name	Written Method Example
EYFS	Taking away ones and Number lines	$\begin{array}{ll} \circ & 0 \\ 0 & 0 \end{array} \rightarrow+\begin{aligned} & 0 \\ & 0 \end{aligned}$
Year 1	Number lines and Informal Partitioning	Children start to show recognisable abstract number sentences. $13-7=6,13-6=7$
Year 2	Partitioning column	
Year 3	Exchanging Formal column	$\begin{array}{ccc} 7 & 28 & -582=146 \\ { }^{4} & 1 & 4 \\ { }^{7} & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$
Year 4	Noughts Formal column	Real life, money, measures,$\begin{array}{r} 700 \\ -487 \\ \hline \end{array}$8 $9^{12} 3^{1} 2$ $-\quad 4 \quad 57$ 475
Year 5	Formal column	Emphasis on decimals, money, measures, reasoning and worded problems
Year 6	Formal column	Reinforcing and securing all of the above

Quick Glance Subtraction Number Size	
Year Group	Number size
EYFS	Up to 1 digit - 1 digit
Year 1	Up to 2 digits - 1 digit
Year 2	Up to 2 digits - 2 digits
Year 3	Up to 3 digits (1000)
Year 4	Up to 4 digits including two decimal places
Year 5/6	More than 4 digits and decimals

To subtract successfully, children need to be able to:

- recall all addition and subtraction facts to 20 ;
- subtract multiples of 10 (such as $160-70$) using the related
subtraction fact,16-7, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of one
hundred, ten and one in different ways (e.g. partition 74 into $70+4$ or $60+14$).

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for subtraction.

In Y3 and Y4 (and beyond where appropriate) the children should record their written calculations using H T O to reinforce the place value of each digit in the sum.

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Multiplication

Multiplication and division are connected. Both express the relationship between a number of equal parts and the whole.

Part	Part	Part	Part
Whole			

Objectives and strategies	Concrete	Pictorial	Abstract
Doubling / repeated grouping	Use a set of objects. Double the set by finding the same number again. $4+4$ double 4 is 8 $4 \times 2=8$ $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups with 4 in each group.	Draw the objects and use bar models showing: 2×3 and 3×2 3×4 and 4×3	Children may start to show recognisable abstract number sentences. $\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$

ST PAUL'S CE PRIMARY SCHOOL

Counting in
multiples/
repeated
addition

$3 \times 4,3$ lots of 4$)$

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Introduction of using arrays to count in multiples of 2,5 , 10 (communtative law)	Use a set of objects. Children can place them in groups or start to focus them in on array shapes. 2×6 6×2	Draw the objects in arrays. Draw in different rotations to find the communtative sentences. This prepares children for finding factors. Also, to help find the area of rectangles.	Children start to use an array to write a range of abstract calculations. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Children should be here by the end of Year 1			
Year 2			
Consolidating use of arrays and repeated addition (distributive law)	32 pegs on a board are to be arranged into fours. How can these be shown? This shows the distributive law where $8 \times 4=3 \times 4+5 \times 4$.	Ch to illustrate this in different ways and should be encouraged to be flexible with how they use number and can be encouraged to break the array into more manageable chunks.	Which could also be seen as $\begin{aligned} & 9 \times 4=(3 \times 4)+(3 \times 4)+(3 \times 4)=12+12+ \\ & 12=36 \\ & \text { Or } 3 \times(3 \times 4)=36 \end{aligned}$

'Shine like stars in the world.'

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

\begin{tabular}{|c|c|c|c|}
\hline Linking multiplication and division through missing number questions \& Use objects to make 24. I know there are 2 lots so split them up. How many in each group?
\[
2 \times ?=24

\] \& \begin{tabular}{l}
Drawing arrays or groups: $3 \times$? $=12$

30

3

?

 \&

Introducing the Inverse operations Trios can be used to model the 4 related multiplication and division facts.

$$
\begin{aligned}
& 3 \times 4=12 \\
& 4 \times 3=12 \\
& 12 \div 3=4 \\
& 12 \div 4=3
\end{aligned}
$$

Children use symbols to represent unknown numbers and complete equations using inverse operations. They use this strategy to calculate the missing numbers in calculations.
\end{tabular}

\hline \multicolumn{4}{|c|}{Children should be here by the end of Year 2}

\hline \multicolumn{4}{|c|}{Year 3}

\hline Partition to multiply \& | Use Numicon to show 15×4 |
| :--- |
| Show multiplication of the 10 s and the 1 s separately | \& Children represent the concrete manipulative in a picture \& | Children be encouraged to show the steps they have taken: $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ |
| :--- |
| A number line can also be used: |

\hline
\end{tabular}

'Shine like stars in the world.'

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Children should be here by the end of Y 3

Year 4

| HTO x O |
| :--- | :--- |
| (no regrouping) |

HTO X O (extra digit in

the answer)

HTO X O

(with
regrouping of ones into tens)

HTO X O

(with
regrouping of tens into hundreds) HTO X O (with regrouping of ones into tens and tens into hundreds)

Children can continue to be supported by place value counters at the stage of multiplication.

$$
257 \times 3=
$$

Use the place value counters to demonstrate multiplying in columns.

Make the number with the place value

Start with the ones. Make 3 groups of 7. E.g.

If there are 10 or more counters in a column exchange for counters in the next highest column.

Children to represent the counters / dienes pictorially: With regrouping of 1 s into Tens, using dienes:

Show in a bar model.

372		
124	124	124

Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

$250 \mathrm{ml}, \mathrm{Cl}$
$4+4+8+8+16$
$5 \times 8=40$ jugs.

Introduction of formal short multiplication:

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Now look at the tens, children make 3

If there are 10 or more counters in a column exchange for the next highest column.
E.g. 10 tens for 1 hundred

The previously exchanged counters are

Now look at the hundreds, make 3 groups of 200 . E.g. $200 \times 3=600$
The previously exchanged counters are added to the product and the multiplication is complete.

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens, then hundreds etc.

Show in a bar model.

771		
257	257	257

With regrouping

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Y6 - Consolidation of compact short multiplication and compact long multiplication methods with up to 4 digits by a 2 digit.

Also onto multiplication of decimals by decimals estimation first, then adding no of decimal places.

$$
\begin{array}{r}
1.24 \\
\times 2.6 \\
\hline 744 \\
+2480 \\
\hline 3.224 \\
\hline 11
\end{array}
$$

ST PAUL'S CE PRIMARY SCHOOL

Quick Glance Multiplication Written Methods:				
Year Group	Written Method Name	Written Method Example		
EYFS	Arrays			

To multiply successfully, children need to be able to:

- recall all multiplication facts to 10×10;
- partition number into multiples of one hundred, ten and one;
- work out products such as $70 \times 5,70 \times 50,700 \times 5$ or 700×50 using the related fact 7×5 and their knowledge of place value;
- add two or more single-digit numbers mentally;
- add multiples of 10 (such as $60+70$) or of 100 (such as $600+700$) using the related addition fact, $6+7$, and their knowledge of place value;
- add combinations of whole numbers using the column method (see above).

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for multiplication.

In Y3 and Y4 (and beyond where appropriate) the children should record their written calculations using Th H T O to reinforce the place value of each digit in the sum.

Year 4	Expanded short multiplication Formal short multiplication Multiplying by 10, 100, 1000	Compact Short:
Year 5	Formal long multiplication including whole numbers by decimals Multiplying decimals by 10 , 100, 1000	Compact Long: Emphasis on decimals, money, measures, reasoning and worded problems
Year 6	Formal long multiplication Including onto multiplying decimals by decimals	$\begin{array}{r} 1.24 \\ \times \quad 2.6 \\ \hline 744 \\ +\quad 2480 \\ \hline 3.224 \\ \hline \end{array}$

ST PAUL'S CE PRIMARY SCHOOL

Division Objectives and strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups Share objects into groups. I have 12 cubes. Can they be shared equally in 3 groups? After sharing between 3 groups we have found that are 4 in each group. $12 \div 3=4$	Children use pictures or shapes to share quantities. $8 \div 2=4$	$6 \div 2=3$3 3 Children should also be encouraged to use their 2 times tables facts. Share 9 buns between three people. $9 \div 3=3$ Share 12 sweets between 3 people. $12 \div 3=4$
Division as grouping	Divide quantities into equal groups.		$12 \div 3=4$ Divide 12 into groups of 3 . How many are in each group?

ST PAUL'S CE PRIMARY SCHOOL
MATHS WRITTEN-CALCULATION POLICY

	After making groups of 3 we discovered there were 4 of them.		
	Child	should be here by the end of Y1	
		Year 2	
Sharing objects into groups	Using place value counters e.g. $96 \div 3=32$ After sharing we found there were 3 tens and 2 ones in each group.	Use pictures or shapes to share quantities. Bar Modelling: Split the bar into the number of groups you are dividing by and work out how many would be within each group. $96 \div 3=$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	Share £96 between 3 children. $£ 96 \div 3=£ 32$

[^0]
ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Grouping objects \begin{tabular}{c}
Divide quantities into equal sized groups. Use

cubes, counters, objects or place value

counters to aid understanding.

I have 12 cubes.

Represent using arrays: How many strawberries will each child

have if 30 are shared between 5 children?
\end{tabular}

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Repeated subtraction	Repeated subtraction using Cuisenaire rods aboveGhildeen $\bigoplus o$ represent repeated subtraction pictorially. $\div 2$		Abstract number line to represent the equal groups that have been subtracted
Children should be here by the end of Y2			
Year 3			
Division with a remainder	$14 \div 3=4 \mathrm{r} 2$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=3 r 1$ Draw dots and group them to divide an amount and clearly show a remainder. Bar model can be used to display whole being divided into equal parts with a remainder left over.	Complete written divisions and show the remainder using r. $14 \div 4=3 r 2$ $17 \div 3=5 r 2$

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Quick Glance Division Written Methods:		
Year Group	Written Method Name	Written Method Example
EYFS	Sharing and grouping in circles	Sharing: $(\mathrm{O}_{3}^{\mathrm{O}} \mathrm{O}_{3}^{\mathrm{O}}{ }_{3}^{\mathrm{O}} \underbrace{\mathrm{O}}_{3}{ }^{\mathrm{O}}$ Grouping:
Year 2	Sharing and grouping in arrays	10 10 10 1 1 10 10 10 1 1 10 10 1 10 10 10 1 1$\quad 96 \div 3=32$
Year 3	Sharing within place value columns Remainders	

To divide successfully in their heads, children need to be able to:

- understand and use the vocabulary of division - for example in $18 \div 3=6$, the 18 is the dividend, the 3 is the divisor and the 6 is the quotient;
- partition two-digit and three-digit numbers into multiples of 100,10 and 1 in different ways;
- recall multiplication and division facts to 10×10, recognise multiples of one-digit numbers and divide multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value;
- know how to find a remainder working mentally - for example, find the remainder when 48 is divided by 5;
- understand and use multiplication and division as inverse operations.
-

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for division. To carry out written methods of division successful, children also need to be able to:

- estimate how many times one number divides into another - for example, how many sixes there are in 47, or how many 23s there are in 92;
- multiply a two-digit number by a single-digit number mentally;
- subtract numbers using the column method.

Quick Glance Division Number Size (Children must stay within these boundaries)	
Year Group	Number size
EYF S/Year 1	Up to 2 digits \div 1 digit
Year 2	Up to 2 digits $\div 1$ digit
Year 3	Up to 2 digits $\div 1$ digit
Year 4	Up to 3 digits $\div 1$ digit
Year 5	Up to 3 digits $\div 1$ digit
Year 6	Up to 4 digits $\div 2$ digit

ST PAUL'S CE PRIMARY SCHOOL

MATHS WRITTEN-CALCULATION POLICY

Reviewed by Michelle Tippett-Nestor	Autumn Term 2023		
Next Revision (Please highlight as appropriate)	Annual	Bi-annual	Tri- annual
To be reviewed	Autumn Term 2024		

[^0]: 'Shine like stars in the world.'

